

激光二极管泵浦的吉赫兹重复频率克尔透镜锁模 Yb:KGW飞秒激光器

陈月航¹,郑立¹,麦海静¹,于洋²,田文龙^{1*},朱江峰^{1**},魏志义³ ¹西安电子科技大学光电工程学院,陕西西安710071; ²西安电子科技大学前沿交叉研究院,陕西西安710071; ³中国科学院物理研究所北京凝聚态物理国家实验室,北京100190

摘要 报道了激光二极管(LD)直接泵浦的吉赫兹(GHz)重复频率克尔透镜锁模Yb:KGW激光器。采用976 nm 单模光纤耦合LD作为泵浦源,在基于Yb:KGW的"蝴蝶形"结构环形腔中,实现了1GHz重复频率的克尔透镜锁模 激光输出,平均功率为90 mW,脉冲宽度为265 fs。进一步利用979.5 nm 单模光纤耦合LD作为泵浦源,将锁模脉 冲的平均功率提高到了151 mW,对应的脉冲宽度为249 fs、中心波长为1045 nm。

关键词 激光器;全固态激光器;GHz重复频率;克尔透镜锁模

中图分类号 TN248.1 文献标志码 A

DOI: 10.3788/CJL220648

1引言

锁模技术是获得超短脉冲的主要手段,其中克尔 透镜锁模因其瞬时响应等优良特性,已经成为固体激 光器中产生飞秒脉冲的最有效技术之一。基于飞秒激 光器的光学频率梳^[1]是精密计量学的有力工具,当光 学频率梳应用于光谱学时,高重复频率的飞秒激光就 变得尤为重要[2]。首先,飞秒激光的重复频率越高,就 意味着其纵模频率间隔越大,更容易直接用光谱仪对 每一根梳齿进行分辨,从而越容易分析和反映出目标 的光谱特征;其次,纵模频率间隔越大,在相同平均功 率条件下每个纵模获得的功率也就越高,在测量中能 够获得越高的信噪比,当功率足够高时甚至可将单个 梳齿分离出来直接作为单频连续激光器^[3]使用。因 此,基于高重复频率飞秒激光器的光学频率梳可应用 于宽带饱和吸收光谱^[4]、航空航天^[5]、精确测距^[6]以及 人体呼吸的实时监测[7]等。在如此广阔的应用前景 下,高重复频率飞秒激光器成为研究热点。

对于吉赫兹(GHz)重复频率的克尔透镜锁模激光器而言,其实现的难点主要在于克尔非线性效应很弱。因此,GHz重复频率谐振腔的设计及增益介质和泵浦源的选择尤为重要。在线性腔中达到GHz的重复频率意味着腔长必须小于150mm,腔体非常紧凑,而环形腔腔长只需要小于300mm。因此,与线性腔相比,

在相同光学长度下环形腔可以获得更高的重复频 率[8],对腔长的容忍度更高。在高重复频率全固态锁 模激光器中,常常使用"蝴蝶形"结构的环形腔。一般 而言,GHz重复频率环形腔中所使用的凹面镜的曲率 半径通常小于50mm,故晶体中的激光束腰一般只有 数十微米,而为了满足软孔光阑克尔透镜锁模原理的 要求,泵浦光聚焦光斑必须略小于激光束腰,因此,光 束质量很差的多模光纤耦合的高功率激光二极管(光 纤芯径为105 μm)无法用作GHz重复频率克尔透镜锁 模激光器的泵浦源。由于软孔光阑克尔透镜锁模对 模式匹配的限制,通常采用单模光纤(光纤芯径约为 6.6 μm)耦合的激光二极管(LD)作为泵浦源,其具有 高亮度和高光束质量的特点,但是最大激光功率仅有 1W左右。因此,为了尽可能提高腔内功率,需要利用 透过率较低的输出耦合镜(OC)来减小谐振腔损耗。 同时,为了进一步产生足够强的克尔效应,很有必要选 用非线性折射率高的增益介质。近些年来,LD泵浦的 多种掺 Yb 晶体均已实现了 GHz 克尔透镜锁模运转, 2009年, Wasylczyk等^[9]采用 500 mW 的单模 LD 泵浦 Yb: KYW 晶体,首次实现了平均功率为115 mW 的 GHz 克尔透镜锁模运转。2012年, Endo 等^[10]同样采 用Yb:KYW晶体获得了4.6GHz锁模输出。此后,日 本东京大学在 GHz 全固态克尔透镜锁模振荡器研究 方面取得了一系列进展:2013年采用Yb:Lu2O3陶瓷获

通信作者: *wltian@xidian.edu.cn; **jfzhu@xidian.edu.cn

收稿日期: 2022-03-09; 修回日期: 2022-04-10; 录用日期: 2022-04-25; 网络首发日期: 2022-05-04

基金项目:国家自然科学基金(11774277)、科技部重点研发计划(2017YFB0405202)、陕西省自然科学基础研究计划(2019JCW-03)、西安市科技创新计划(202005YK01)

研究论文

得了6 GHz 锁模输出^[11];2015年在基于 Yb: Y₂O₃ 陶瓷 的15 GHz谐振腔中实现了锁模运转^[12];2019年基于 非常紧凑的线性腔结构,利用Yb:Y,O,陶瓷实现了重 复频率大于20GHz的锁模运转^[13],但是平均功率都只 有数毫瓦或者数十毫瓦。2018年,日本东京大学 Kimura等^[14]利用Yb:CALGO晶体实现了1GHz重复 频率的锁模运转,并通过腔外压缩的方式获得短至 22 fs的激光脉冲,但是锁模功率仅有3mW。相比而 言,Yb:KGW晶体在980 nm处的主吸收峰吸收截面 大 $(1.22 \times 10^{-19} \text{ cm}^2)^{[15-16]}$,可以获得较高的泵浦效 率^[17],在1023 nm 处的发射截面高达2.8×10⁻²⁰ cm², 因此具有更高的增益,更重要的是,其非线性折射率更 高(2×10⁻¹⁵ cm²/W)^[18],有利于实现克尔透镜锁模,且 其25 nm的发射带宽足以支持亚百飞秒激光的产 生^[19],因此对Yb:KGW激光器的研究很有意义。2021 年,本课题组报道了单模光纤激光器泵浦的2GHz Yb:KGW克尔透镜锁模激光器^[20],输出功率首次超过 1W。但是,目前利用结构稳定、成本更低的单模光纤 耦合LD泵浦的GHz重复频率Yb:KGW激光器还未 见报道。

本文采用"蝴蝶形"结构的环形腔,在LD泵浦 Yb:KGW激光器中实现了重复频率为1GHz的克尔 透镜锁模运转。锁模脉冲的光谱宽度为4.2 nm,脉冲 宽度为249 fs,平均输出功率为151 mW,相应的光光 转换效率为18%,可实现自启动和长期稳定运转。相 比于价格高昂的光纤激光器泵浦的GHz锁模激光 器,我们在实验中采用结构稳定的单模光纤耦合LD 作为泵浦源,有效降低了成本,具有更加广泛的应用 范围。

2 实 验

实验装置如图 1 所示,其中 HWP 为半波片, P_1 和 P_2 为输出光束。采用通光长度为 2 mm、掺杂浓度(原子数分数,全文同)为 5% 的 Yb:KGW 晶体作为增益 介质,其通光面镀有 980~1100 nm 的增透膜,并通过 水冷散热的方式消除晶体的热积累。

泵浦源分别选用了中心波长为976 nm 的单模光

第 50 卷 第 2 期/2023 年 1 月/中国激光

图1 LD泵浦的1GHz重复频率Yb:KGW克尔透镜锁模激光 器的实验装置图

Fig. 1 Diagram of experimental setup for LD-pumped Kerrlens mode-locked Yb: KGW laser with 1 GHz repetition rate

纤耦合 LD(最大输出功率为 900 mW)和中心波长为 979.5 nm 的单模光纤耦合 LD,均为蝶形封装并耦合 进单模光纤的商用泵浦源。泵浦激光通过携带环形连 接器/微凸抛光连接器跳线的尾纤进入自由空间,然后 通过一个扩束比为 1:3 的耦合系统聚焦到晶体中心, 晶体中心处的泵浦光聚焦光斑直径约为 22 μ m,小于 晶体中心处激光的束腰直径 40 μ m,因此非常适用于 软孔克尔透镜锁模。谐振腔为四镜环形腔结构,总腔 长为 274.5 mm,对应的重复频率为 1.093 GHz。其中 M₁和 M₂均为曲率半径为 50 mm 的凹面镜, M₂和 M₃均为 GTI(Gires-Tournois interferometer)镜,共可提供单程 1600 fs²(1035~1055 nm)的负色散。为了保证足够高的腔 内峰值功率,所用的输出耦合镜(OC)的透过率为0.4%。

3 结果和讨论

实验中,我们选用的泵浦源是中心波长为976 nm 的单模光纤耦合LD。首先对连续光功率进行了优化。 连续光运转时为双向输出,两路输出功率最高分别为 37.4 mW和32.4 mW。之后通过调节M₂寻找锁模位 置,锁模启动时连续光变为单向运转,平均输出功率为 90 mW,锁模光谱的中心波长为1045 nm,半峰全宽 (Δλ)为4.5 nm,自相关曲线的半峰全宽为409 fs,拟合 的脉冲宽度为265 fs,如图2所示。

Fig. 2 Experimental results before improvement. (a) Mode-locked spectrum; (b) auto-correlation curve

研究论文

第 50 卷 第 2 期/2023 年 1 月/中国激光

由于Yb:KGW晶体的主吸收峰位于980 nm处,晶体在980 nm处的吸收截面更高,泵浦吸收效率更高。 为了进一步提升输出功率,选择泵浦波长更接近晶体主 吸收峰波长的泵浦源,即将泵浦源更换为中心波长为 979.5 nm、最大输出功率为830 mW的单模光纤耦合 LD。同时,由于Yb:KGW为各向异性晶体,沿光率体 中轴偏振方向的吸收截面更大^[16],因此实验中通过半波

片来调节泵浦光的偏振以进一步提高晶体的吸收效率。 最终实现单向锁模时,平均功率提高至151 mW。此时 的锁模光谱如图3(a)所示,中心波长位于1045 nm附 近,光谱半峰全宽为4.2 nm,1065 nm处产生的色散波 是GTI镜的色散补偿带宽受限所致。使用商用自相关 仪测量了相应的锁模激光脉冲的自相关曲线,如图3(b) 所示,半峰全宽为384 fs,拟合的脉冲宽度为249 fs。

图 3 改进后的实验结果。(a)锁模光谱图;(b)自相关曲线 Fig. 3 Experimental results after improvement. (a) Mode-locked spectrum; (b) auto-correlation curve

此外,我们进一步对腔内色散补偿进行了实验分 析。分别利用高反镜(HR)、色散补偿量为-300 fs²的 GTI镜、色散补偿量为-550 fs²的GTI镜、色散补偿量 为-800 fs²的 GTI 镜以及色散补偿量为-1000 fs² 的GTI镜作为M。进行了测试。结果显示,使用HR或 色散补偿量为-300 fs²的GTI时不能启动锁模,使用 色散补偿量为-550 fs²的GTI时可以启动锁模但是锁 模不稳定,使用色散补偿量为-1000 fs²的GTI时容 易启动锁模但是锁模很不稳定,只有使用色散补偿量 为-800 fs²的GTI时可以实现长期稳定锁模。在使 用HR或色散补偿量为一300 fs²的GTI时,由于色散 补偿不足,锁模无法启动。另外,观察色散补偿量为 -550 fs²的 GTI 和色散补偿量为-1000 fs²的 GTI 的 色散曲线,发现其主要的色散补偿范围分别位于 1050~1080 nm 和 1055~1075 nm, 与锁模波段不匹 配。色散补偿量为-800 fs²的GTI的主要色散补偿波 段为1030~1060 nm,与锁模波段重合且能够提供足 够的色散补偿,因此可以实现稳定锁模,且在实验室环 境下,仅通过增加泵浦功率即可实现锁模自启动,并能

够长期稳定运行。图4(a)为锁模稳定运转时的频谱, 基频信号在1.029 GHz处的信噪比为62 dB。由于所 用高速光电探头的带宽为350 MHz,因此基频光的信 号强度偏低,同时谐波强度较小,因此未进行相关数据 的采集。锁模功率长期稳定性的测量结果如图4(b) 所示,平均功率为151 mW,24 h内的功率抖动均方根 (RMS)为0.76%。其中,环境振动等因素变化使得激 光器脱离了稳定锁模的状态,因此在3h附近以及6h 附近出现了功率抖动,但均能在短时间内重新自启动。 相比于此前的LD泵浦的高重复频率激光器^[10-12],所设 计的激光器在输出功率提升方面获得了很大的进步。 上述实验[10-12]为了在更高重复频率下获得足够高的峰 值功率以增强克尔效应,直接将透过率低于0.05%的 啁啾镜作为输出镜,输出功率均在十毫瓦或数十毫瓦 量级,而我们选用了比Yb:KYW(8.7×10⁻¹⁶ cm²/W)、 Yb: Lu₂O₃ (8.6×10⁻¹⁶ cm²/W) 以及Yb: Y₂O₃ (13× 10⁻¹⁶ cm²/W)晶体具有更高非线性折射率的Yb:KGW 晶体 $(20 \times 10^{-16} \text{ cm}^2/\text{W})$ 作为增益介质,且选用透过率 为0.4%的OC,因此能够获得高达151mW的锁模功率

Fig. 4 Experimental results. (a) Radio frequency spectrum during stable mode-locking; (b) long-term power stability measurement result with mode-locked spot shown in inset

研究论文

输出。相较于重复频率相当的激光器^[3],所设计的激光器^[3],所设计的激光器在 500 mW 的泵浦功率下采用透过率为 0.5% 的 OC 获得了 115 mW 的锁模功率输出,我们采用泵浦功率 (900 mW)更高的泵浦源进一步提高了锁模输出功率。

4 结 论

设计了单模光纤耦合LD泵浦的GHz重复频率克 尔透镜锁模Yb:KGW飞秒激光器,输出功率达到 151 mW,且可以实现长期稳定运转。采用高功率多 模LD泵浦有望实现瓦级高功率的锁模输出,但是急 需解决腔模匹配问题以及光束质量问题。未来将在多 模LD泵浦的高功率GHz克尔透镜锁模激光器^[21]方面 进行探索,相信在不久的将来,直接由多模光纤耦合 LD泵浦的高功率GHz克尔透镜锁模激光器将成为 可能。

参考文献

- Diddams S A, Vahala K, Udem T. Optical frequency combs: coherently uniting the electromagnetic spectrum[J]. Science, 2020, 369(6501): eaay3676.
- [2] 郑佳琪,丛振华,刘兆军,等.高重复频率超短激光脉冲产生及 频率变换技术发展趋势[J].中国激光,2021,48(12):1201008.
 Zheng J Q, Cong Z H, Liu Z J, et al. Recent trend of high repetition rate ultrashort laser pulse generation and frequency conversion[J]. Chinese Journal of Lasers, 2021, 48(12):1201008.
- [3] Gerginov V, Tanner C E, Diddams S A, et al. High-resolution spectroscopy with a femtosecond laser frequency comb[J]. Optics Letters, 2005, 30(13): 1734-1736.
- [4] Heinecke D C, Bartels A, Fortier T M, et al. Optical frequency stabilization of a 10 GHz Ti: sapphire frequency comb by saturated absorption spectroscopy in ⁸⁷rubidium[J]. Physical Review A, 2009, 80(5): 053806.
- [5] Feng Y, Lamour T P, Ostapenko H, et al. Towards a spacequalified Kerr-lens mode-locked laser[J]. Optics Letters, 2021, 46 (21): 5429-5432.
- [6] Jang Y S, Kim S W. Distance measurements using mode-locked lasers: a review[J]. Nanomanufacturing and Metrology, 2018, 1 (3): 131-147.
- [7] Thorpe M J, Moll K D, Jones R J, et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection [J]. Science, 2006, 311(5767): 1595-1599.

第 50 卷 第 2 期/2023 年 1 月/中国激光

- [8] 郑立,汪会波,田文龙,等.LD泵浦的高重复频率全固态飞秒激 光器(特邀)[J].红外与激光工程,2020,49(12):20201069.
 Zheng L, Wang H B, Tian W L, et al. LD-pumped highrepetition-rate all-solid-state femtosecond lasers (invited) [J].
 Infrared and Laser Engineering, 2020, 49(12): 20201069.
- [9] Wasylczyk P, Wnuk P, Radzewicz C. Passively modelocked, diode-pumped Yb:KYW femtosecond oscillator with 1 GHz repetition rate[J]. Optics Express, 2009, 17(7): 5630-5635.
- [10] Endo M, Ozawa A, Kobayashi Y. Kerr-lens mode-locked Yb: KYW laser at 4.6-GHz repetition rate[J]. Optics Express, 2012, 20(11): 12191-12197.
- [11] Endo M, Ozawa A, Kobayashi Y. 6-GHz, Kerr-lens mode-locked Yb:Lu₂O₃ ceramic laser for comb-resolved broadband spectroscopy [J]. Optics Letters, 2013, 38(21): 4502-4505.
- [12] Endo M, Ito I, Kobayashi Y. Direct 15-GHz mode-spacing optical frequency comb with a Kerr-lens mode-locked Yb: Y₂O₃ ceramic laser[J]. Optics Express, 2015, 23(2): 1276-1282.
- [13] Kimura S, Tani S, Kobayashi Y. Kerr-lens mode locking above a 20 GHz repetition rate[J]. Optica, 2019, 6(5): 532-533.
- [14] Kimura S, Nakamura T, Tani S, et al. Anomalous spectral broadening in high quality-factor, 1-GHz mode-locked oscillator using Yb: CALGO crystal[C]// CLEO Pacific Rim Conference, July 29-August 3, 2018, Hong Kong, China. Washington, D.C.: OSA, 2018: W4A.8.
- [15] 李丽,樊仲维,余锦,等.Yb:KGW飞秒激光器研究进展[J].激 光与光电子学进展, 2012, 49(11): 110004.
 Li L, Fan Z W, Yu J, et al. Research progress of Yb: KGW femtosecond laser[J]. Laser & Optoelectronics Progress, 2012, 49 (11): 110004.
- [16] Biswal S, O'Connor S P, Bowman S R. Thermo-optical parameters measured in ytterbium-doped potassium gadolinium tungstate[J]. Applied Optics, 2005, 44(15): 3093-3097.
- [17] Yang J F, Wang Z H, Song J J, et al. Diode-pumped 13 W Yb:KGW femtosecond laser[J]. Chinese Optics Letters, 2022, 20 (2): 021404.
- [18] Major A, Nikolakakos I, Aitchison J S, et al. Characterization of the nonlinear refractive index of the laser crystal Yb: KGd(WO₄)₂
 [J]. Applied Physics B, 2003, 77(4): 433-436.
- [19] Paunescu G, Hein J, Sauerbrey R. 100-fs diode-pumped Yb: KGW mode-locked laser[J]. Applied Physics B, 2004, 79(5): 555-558.
- [20] Zheng L, Tian W L, Liu H, et al. 2-GHz watt-level Kerr-lens mode-locked Yb: KGW laser[J]. Optics Express, 2021, 29(9): 12950-12957.
- Zheng L, Chen Y H, Tian W L, et al. 1.6-GHz, 3.3-W Kerr-lens mode-locked Yb: KGW oscillator pumped by a multimode laser diode[C] // Conference on Lasers and Electro-Optics (CLEO), May 15-20, 2022, San Jose, California, United States. Washington, D.C.: Optica Publishing Group, 2022: SS2A.6.

LD-Pumped Kerr-Lens Mode-Locked Yb:KGW Femtosecond Laser with GHz Repetition Rate

Chen Yuehang¹, Zheng Li¹, Mai Haijing¹, Yu Yang², Tian Wenlong^{1*}, Zhu Jiangfeng^{1**}, Wei Zhivi³

¹School of Optoelectronic Engineering, Xidian University, Xi'an 710071, Shaanxi, China;

²Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, Shaanxi, China;

³Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science,

Beijing 100190, China

Abstract

Objective Optical frequency combs based on femtosecond lasers are powerful tools for the development of precision metrology.

Femtosecond lasers with high repetition rates are particularly important when optical-frequency combs are applied to spectroscopy. However, it is difficult to realize high-repetition-rate Kerr-lens mode-locking because of the weak Kerr nonlinear effect. Due to the mode matching limitation of soft aperture Kerr-lens mode-locking, a single-mode fiber-coupled laser diode (LD) is usually used as the pump source, and an output coupling (OC) mirror with low transmittance is chosen to improve the intracavity peak power, resulting in a low output power. Output power is an important parameter when a high-repetition-rate laser is used for optical frequency comb generation. Therefore, it is essential to improve the output power of GHz-mode-locked lasers.

Methods The Yb : KGW crystal is an excellent candidate for Kerr-lens mode-locking because of its high nonlinear refractive index of 2×10^{-15} cm²/W. It has a large absorption cross section $(1.22 \times 10^{-19} \text{ cm}^2)$ at 980 nm, which additionally supports its high pumping efficiency. Moreover, the emission cross section at 1023 nm is as high as 2.8×10^{-20} cm², meaning it has a high gain, which is expected to achieve a high power output. Based on the above properties, we demonstrate a high-power Kerr-lens mode-locked Yb : KGW femtosecond laser with 1 GHz repetition rate.

The experimental setup is shown in Fig. 1. Single-mode fiber-coupled LDs with center wavelengths of 976 nm and 979.5 nm are selected as the pump sources. To improve the mode matching, the pump light is collimated and focused through a coupling system with an imaging ratio of 1:3, and the radius of the focused pump spot is $11 \,\mu$ m. A 2-mm long Yb : KGW crystal coated with an anti-reflection film @ 980 - 1100 nm on both transparent surfaces is used as the gain medium. During the experiment, the crystal is wrapped with indium foil and mounted on a water-cooled copper heat sink block to ensure effective heat dissipation. The resonant cavity is a four-mirror ring cavity with a total cavity length of 274.5 mm, corresponding to a repetition rate of 1.093 GHz. M_1 and M_2 are concave mirrors with a radius of curvature (ROC) of 50 mm, and M_2 and M_3 are interferometer (GTI) mirrors providing $-1600 \, \text{fs}^2$ (1035–1055 nm) group delay dispersion (GDD) in total per round trip. An OC with a transmittance of 0.4% is selected to ensure a sufficiently high power in the cavity.

Results and Discussions First, using the 976 nm single-mode LD as the pump source, mode-locking with an average power output of 90 mW at a center wavelength of 1045 nm and a full width at half maximum (FWHM) of 4.5 nm is achieved [Fig. 2(a)], and the corresponding pulse duration is 265 fs [Fig. 2(b)]. To increase the output power of mode-locking, the pump source is replaced with a 979.5 nm single-mode LD, whose wavelength is closer to the main absorption peak wavelength of the crystal. In addition, the polarization of the pump light is adjusted using a half-wave plate to further improve the absorption efficiency of the crystal. Consequently, the average power of unidirectional mode-locking is increased to 151 mW. The FWHM of the optical spectrum is approximately 4.2 nm at a center wavelength of 1045 nm [Fig. 3(a)], and the corresponding pulse duration is 249 fs [Fig. 3(b)]. In the laboratory environment, mode-locking can be self-started only by increasing the pump power, and the root mean square (RMS) value of power fluctuations within 24 h is 0.76% [Fig. 4(b)]. The power jitter in the vicinity of 3 h and 6 h is because of environmental vibration and other factors that cause the laser to move out of the stable mode-locked state; however, it can restart in a short time. The signal-to-noise ratio of the 1.029 GHz fundamental frequency signal in radio frequency spectrum is 62 dB [Fig. 4(a)].

Conclusions We report a 1 GHz Kerr-lens mode-locked Yb : KGW laser pumped by a laser diode. A 976 nm single-mode fibercoupled laser diode is used as the pump, and a stable mode-locked operation at a repetition rate of 1 GHz with an output power of 90 mW is obtained in a bow-tie ring cavity with a pulse duration of 265 fs. By using a 979.5 nm single-mode laser diode as the pump source and adjusting the polarization of the pump beam, the output power is increased to 151 mW at a center wavelength of 1045 nm, and the corresponding pulse duration is 249 fs.

Key words lasers; all solid-state lasers; GHz repetition rate; Kerr-lens mode-locking